
Introduction to

Genetic Algorithms

Introduction to Genetic Algorithms 1



Genetic Algorithms (GA) OVERVIEW
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 A class of probabilistic optimization algorithms

 Inspired by the biological evolution process

 Uses concepts of “Natural Selection” and “Genetic 

Inheritance” (Darwin 1859)

 Originally developed by John Holland (1975)



GA overview (cont)
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 Particularly well suited for hard problems where little is 

known about the underlying search space

 Widely-used in business, science and engineering



Classes of Search Techniques
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Search Techniqes

Calculus Base 

Techniqes
Guided random search 

techniqes
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Techniqes

BFSDFS Dynamic 

Programming

Tabu Search Hill 

Climbing

Simulated 

Anealing

Evolutionary 

Algorithms

Genetic 

Programming

Genetic 

Algorithms

Fibonacci Sort



A genetic algorithm maintains a population of 

candidate solutions for the problem at hand,

and makes it evolve by

iteratively applying

a set of stochastic operators

Introduction to Genetic Algorithms5



Stochastic operators
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 Selection replicates the most successful solutions found in 

a population at a rate proportional to their relative quality 

 CrossOver decomposes two distinct solutions and then 

randomly mixes their parts to form novel solutions

 Mutation randomly perturbs a candidate solution



The Metaphor
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NatureGenetic Algorithm

EnvironmentOptimization problem

Individuals living in that 

environment

Feasible solutions

Individual’s degree of 

adaptation to its 

surrounding environment

Solutions quality (fitness 

function)



The Metaphor (cont)

NatureGenetic Algorithm

A population of organisms 

(species)

A set of feasible solutions

Selection, cross over and 

mutation in nature’s 

evolutionary process

Stochastic operators

Evolution of populations to 

suit their environment

Iteratively applying a set 

of stochastic operators on 

a set of feasible solutions
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The Metaphor (cont)
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The computer model introduces simplifications 

(relative to the real biological mechanisms), 

BUT

surprisingly complex and interesting structures 

have emerged out of evolutionary algorithms



Simple Genetic Algorithm
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produce an initial population of individuals

evaluate the fitness of all individuals

while termination condition not met do

select fitter individuals for reproduction

recombine between individuals

mutate individuals

evaluate the fitness of the modified individuals

generate a new population

End while



The Evolutionary Cycle
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selection

population evaluation

modification

discard

deleted 

members

parents

modified

offspring

evaluated offspring

initiate &

evaluate



Example:

the MAXONE problem
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Suppose we want to maximize the number of 

ones in a string of l binary digits

Is it a trivial problem?

It may seem so because we know the answer in 

advance

However, we can think of it as maximizing the 

number of correct answers, each encoded by 1, 

to l yes/no difficult questions`



Example (cont)
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 An individual is encoded (naturally) as a string of l binary 

digits

 The fitness f of a candidate solution to the MAXONE 

problem is the number of ones in its genetic code

 We start with a population of n random strings. Suppose 

that l = 10 and n = 6



Example (initialization)
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We toss a fair coin 60 times and get the 

following initial population:

s1 = 1111010101 f (s1) = 7

s2 = 0111000101 f (s2) = 5

s3 = 1110110101 f (s3) = 7

s4 = 0100010011 f (s4) = 4

s5 = 1110111101 f (s5) = 8

s6 = 0100110000 f (s6) = 3



Example (selection1)
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Next we apply fitness proportionate selection with the 

roulette wheel method:

21
n

3

Area is 

Proportional 

to fitness 

value

Individual i will have a 

probability to be chosen


i
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We repeat the extraction 

as many times as the 

number of individuals we 

need to have the same 

parent population size      

(6 in our case)



Example (selection2)
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Suppose that, after performing selection, we get 

the following population:

s1` = 1111010101 (s1)

s2` = 1110110101 (s3)

s3` = 1110111101 (s5)

s4` = 0111000101 (s2)

s5` = 0100010011 (s4)

s6` = 1110111101 (s5)



Example (crossover1)

Introduction to Genetic Algorithms17

Next we mate strings for crossover. For each 

couple we decide according to crossover 

probability (for instance 0.6) whether to actually 

perform crossover or not

Suppose that we decide to actually perform 

crossover only for couples (s1`, s2`) and (s5`, s6`).

For each couple, we randomly extract a 

crossover point, for instance 2 for the first and 5 

for the second



Example (crossover2)
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s1` = 1111010101

s2` = 1110110101

s5` = 0100010011

s6` = 1110111101

Before crossover:

After crossover:

s1`` = 1110110101

s2`` = 1111010101

s5`` = 0100011101

s6`` = 1110110011



Example (mutation1)
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The final step is to apply random mutation: for each bit that 

we are to copy to the new population we allow a small 

probability of error (for instance 0.1)

Before applying mutation:

s1`` = 1110110101

s2`` = 1111010101

s3`` = 1110111101

s4`` = 0111000101

s5`` = 0100011101

s6`` = 1110110011



Example (mutation2)
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After applying mutation:

s1``` = 1110100101 f (s1``` ) = 6

s2``` = 1111110100 f (s2``` ) = 7

s3``` = 1110101111 f (s3``` ) = 8

s4``` = 0111000101 f (s4``` ) = 5 

s5``` = 0100011101 f (s5``` ) = 5 

s6``` = 1110110001 f (s6``` ) = 6 



Example (end)
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In one generation, the total population fitness 

changed from 34 to 37, thus improved by ~9%

At this point, we go through the same process 

all over again, until a stopping criterion is met


