
Introduction to

Genetic Algorithms

Introduction to Genetic Algorithms 1

Genetic Algorithms (GA) OVERVIEW

Introduction to Genetic Algorithms2

 A class of probabilistic optimization algorithms

 Inspired by the biological evolution process

 Uses concepts of “Natural Selection” and “Genetic

Inheritance” (Darwin 1859)

 Originally developed by John Holland (1975)

GA overview (cont)

Introduction to Genetic Algorithms3

 Particularly well suited for hard problems where little is

known about the underlying search space

 Widely-used in business, science and engineering

Classes of Search Techniques

Introduction to Genetic Algorithms4

Search Techniqes

Calculus Base

Techniqes
Guided random search

techniqes

Enumerative

Techniqes

BFSDFS Dynamic

Programming

Tabu Search Hill

Climbing

Simulated

Anealing

Evolutionary

Algorithms

Genetic

Programming

Genetic

Algorithms

Fibonacci Sort

A genetic algorithm maintains a population of

candidate solutions for the problem at hand,

and makes it evolve by

iteratively applying

a set of stochastic operators

Introduction to Genetic Algorithms5

Stochastic operators

Introduction to Genetic Algorithms6

 Selection replicates the most successful solutions found in

a population at a rate proportional to their relative quality

 CrossOver decomposes two distinct solutions and then

randomly mixes their parts to form novel solutions

 Mutation randomly perturbs a candidate solution

The Metaphor

Introduction to Genetic Algorithms7

NatureGenetic Algorithm

EnvironmentOptimization problem

Individuals living in that

environment

Feasible solutions

Individual’s degree of

adaptation to its

surrounding environment

Solutions quality (fitness

function)

The Metaphor (cont)

NatureGenetic Algorithm

A population of organisms

(species)

A set of feasible solutions

Selection, cross over and

mutation in nature’s

evolutionary process

Stochastic operators

Evolution of populations to

suit their environment

Iteratively applying a set

of stochastic operators on

a set of feasible solutions

Introduction to Genetic Algorithms 8

The Metaphor (cont)

Introduction to Genetic Algorithms9

The computer model introduces simplifications

(relative to the real biological mechanisms),

BUT

surprisingly complex and interesting structures

have emerged out of evolutionary algorithms

Simple Genetic Algorithm

Introduction to Genetic Algorithms10

produce an initial population of individuals

evaluate the fitness of all individuals

while termination condition not met do

select fitter individuals for reproduction

recombine between individuals

mutate individuals

evaluate the fitness of the modified individuals

generate a new population

End while

The Evolutionary Cycle

Introduction to Genetic Algorithms11

selection

population evaluation

modification

discard

deleted

members

parents

modified

offspring

evaluated offspring

initiate &

evaluate

Example:

the MAXONE problem

Introduction to Genetic Algorithms12

Suppose we want to maximize the number of

ones in a string of l binary digits

Is it a trivial problem?

It may seem so because we know the answer in

advance

However, we can think of it as maximizing the

number of correct answers, each encoded by 1,

to l yes/no difficult questions`

Example (cont)

Introduction to Genetic Algorithms13

 An individual is encoded (naturally) as a string of l binary

digits

 The fitness f of a candidate solution to the MAXONE

problem is the number of ones in its genetic code

 We start with a population of n random strings. Suppose

that l = 10 and n = 6

Example (initialization)

Introduction to Genetic Algorithms14

We toss a fair coin 60 times and get the

following initial population:

s1 = 1111010101 f (s1) = 7

s2 = 0111000101 f (s2) = 5

s3 = 1110110101 f (s3) = 7

s4 = 0100010011 f (s4) = 4

s5 = 1110111101 f (s5) = 8

s6 = 0100110000 f (s6) = 3

Example (selection1)

Introduction to Genetic Algorithms15

Next we apply fitness proportionate selection with the

roulette wheel method:

21
n

3

Area is

Proportional

to fitness

value

Individual i will have a

probability to be chosen

i

if

if

)(

)(

4

We repeat the extraction

as many times as the

number of individuals we

need to have the same

parent population size

(6 in our case)

Example (selection2)

Introduction to Genetic Algorithms16

Suppose that, after performing selection, we get

the following population:

s1` = 1111010101 (s1)

s2` = 1110110101 (s3)

s3` = 1110111101 (s5)

s4` = 0111000101 (s2)

s5` = 0100010011 (s4)

s6` = 1110111101 (s5)

Example (crossover1)

Introduction to Genetic Algorithms17

Next we mate strings for crossover. For each

couple we decide according to crossover

probability (for instance 0.6) whether to actually

perform crossover or not

Suppose that we decide to actually perform

crossover only for couples (s1`, s2`) and (s5`, s6`).

For each couple, we randomly extract a

crossover point, for instance 2 for the first and 5

for the second

Example (crossover2)

Introduction to Genetic Algorithms18

s1` = 1111010101

s2` = 1110110101

s5` = 0100010011

s6` = 1110111101

Before crossover:

After crossover:

s1`` = 1110110101

s2`` = 1111010101

s5`` = 0100011101

s6`` = 1110110011

Example (mutation1)

Introduction to Genetic Algorithms19

The final step is to apply random mutation: for each bit that

we are to copy to the new population we allow a small

probability of error (for instance 0.1)

Before applying mutation:

s1`` = 1110110101

s2`` = 1111010101

s3`` = 1110111101

s4`` = 0111000101

s5`` = 0100011101

s6`` = 1110110011

Example (mutation2)

Introduction to Genetic Algorithms20

After applying mutation:

s1``` = 1110100101 f (s1```) = 6

s2``` = 1111110100 f (s2```) = 7

s3``` = 1110101111 f (s3```) = 8

s4``` = 0111000101 f (s4```) = 5

s5``` = 0100011101 f (s5```) = 5

s6``` = 1110110001 f (s6```) = 6

Example (end)

Introduction to Genetic Algorithms21

In one generation, the total population fitness

changed from 34 to 37, thus improved by ~9%

At this point, we go through the same process

all over again, until a stopping criterion is met

